If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12t^2-37t-10=0
a = 12; b = -37; c = -10;
Δ = b2-4ac
Δ = -372-4·12·(-10)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-37)-43}{2*12}=\frac{-6}{24} =-1/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-37)+43}{2*12}=\frac{80}{24} =3+1/3 $
| -28=6(6r-8)+4(r+5) | | (2r+3)/(3r-6)=6 | | 4x-12=(x-3)4 | | 4x+9=4(x-7) | | 7(x-1)=-2x+101 | | 4x=4x+10.5 | | 2x-5+3x-2=180 | | {20}{x}=-5 | | -0.99x-1.5x=-9.213 | | 36=n/20 | | 6a-8=4a+62a= | | -(2x-7)-6x=-(2x-7)-6x | | x+30+3x+2(3x+30)=990 | | a-a(.25)-a(.05)=2310.79 | | 180=3x+8x+x | | 8x-2x=52-10 | | 1/2(8x-7)=4x+7 | | x=3+5·2 | | 5/4+4m/9=73/36 | | -8=u/3+1 | | 3x+7=−3x+2+6x | | a-a(.25)-a(.05)=4708.86 | | -4(5n-8)=48 | | 7n=-2 | | 10x-6=7x+4 | | 64p^2-7=9 | | 2(3x+8)=-12+22 | | 9(x+6)+7=-11 | | 24=52+j | | -2+2b-2b=3+3b+4 | | 6(2x-8)=66x | | x/0.8=15 |